The **SLUDGE DEWATERING SYSTEM** shall include, within a single skid-mounted assembly, one (1) screw press, emulsion-type polymer dilution/feed system, head tank with ¾ HP variable speed flocculator, control panel and all necessary piping, valves, and wiring to optimize mixing and feeding of polymer with the sludge prior to entering the screw press.

Cleanout ports and all other equipment necessary for the sludge dewatering process, with the exception of the sludge feed pump, when supplied, shall be on the skid.

SCREW PRESS - one (1) Model PB-6D press, as follows:

The housing shall be rigid Type 304 stainless steel weldment, supported by structural carbon steel base. Housing shall have removable doors for screen access. Press to have stainless steel discharge chute with hinged lid and safety shut-off switch.

The drive unit shall consist of an electric motor, gear reducer and V-belt/sheave arrangement. The motor shall be a 3 HP, 1200 RPM, TEFC motor. The gear reducer shall be a helical, shaft-mounted reducer, 25:1 gear ratio with side arm tension bar bolted to head flange. Screw speed shall be variable over a range of 1 RPM to 15 RPM through variable speed inverter, mounted on control panel.

The screw assembly shall consist of a stainless steel shaft with welded-on stainless steel helical flight. A plug cutter shall be attached to the screw shaft in the head area. A mono-filament brush shall be attached to the screw flights. The screw shaft shall be attached to the gear reducer and supported in the head by a radial bearing.

The screen assembly shall be Type 304 stainless steel and consist of an inner screen and outer screen. Inner screen shall have .023" diameter holes; outer screen shall have 0.25" diameter holes.

An emulsion-type **POLYMER SYSTEM** shall be furnished for metering and dilution of polymer to the sludge stream. The unit shall be mounted, piped and electrically interlocked as an integral part of the skidded sludge dewatering system.

Polymer unit shall be sized in accordance with the following requirements:

- Emulsion Polymer 0.05 - 1.0 gph
- Fresh Water Supply 60 - 600 gph @ Max. Pressure 100 PSIG
 Min. Pressure 35 PSIG
SLUDGE CONDITIONING/HEAD TANK - one (1) 30-gallon capacity, cone bottom, tank of molded, corrosion and impact-resistant polyethylene. A high level flow cut off and alarm shall be mounted to tank and wired into the system control circuit. Tank assembly shall include a paddle type flocculator, with ¾ HP variable speed drive.

All SLUDGE PIPING shall be 3”, Type 1, Schedule 80, PVC. Sludge feed connection shall be 3” flanged. Pressate discharge connection shall be 3” flanged. VALVES shall be ball type. Cleanout and drain connections shall be provided in the sludge piping. All sludge, pressate and water piping, and valves to and from the skid assembly, shall be by others.

All POLYMER PIPING shall be ½”, Type 1, Schedule 80, PVC. VALVES shall be ball type.

The SKID frame shall be a rigid support structure fabricated of carbon steel channels of adequate design for rigidity during transport and sliding into place. One inch steel pads shall be welded to all four (4) corners of the skid to facilitate in-place leveling. All skid carbon steel surfaces will be abrasively blasted and coated with an electrostatically applied powder coated paint system.

The ELECTRICAL CONTROL PANEL shall be painted, carbon steel, NEMA 4X, U.L. approved, with all necessary electrical components mounted and prewired. All start-stop switches for system functions shall be mounted on the panel. All switches shall be identified as to function and motor affected. The panel shall be designed to accept *____, 4 wire, A.C. service to the line side of a three pole, molded case, circuit breaker operable from outside the cabinet.

* Customer to specify supply voltage as 208/230 or 460 volt, 3 phase, 60 hertz.

Equipment Manufactured by SOMAT Company
Coatesville, PA 19320
Sold under manufacturer’s warranty.